
RecipeApp
A Modern Recipe 
Management Solution

John Abbott College FSD-14 2025

---By Minh Triet Vu and Peng Yang ---



Background & Overview

Context:
Cooking enthusiasts often struggle to find, 

organize, and store recipes from multiple 

sources.

Our project aims to centralize recipe 

management, allowing users to browse, import, 

and manage meals efficiently.

Problem Solved:
Provides a unified system for recipe storage, 

search, and categorization, solving data 

fragmentation and limited API use in existing 

apps.



Solution Overview

Our Web Application Includes:

- User Registration & Login (Spring Boot + 
MySQL) 
- Admin Dashboard for managing users and 
recipes 
- Recipe import via external API (TheMealDB) 
- Category & Cuisine filtering 
- Bootstrap-based responsive UI 

User Perspective:

- Simple UI for exploring and importing meals 
- Role-based access control
- Browse a dynamic list of recipes with category 

and cuisine filters
- View detailed recipe pages with instructions 

and nutritional information



Features (User & Admin)

User Features: 

- View and search recipes 
- Manage personal recipes 
- Explore imported meals

Admin Features:

- Manage users (promote, delete) 
- Import recipes from TheMealDB API 
- Edit or delete existing recipes

Placeholder: Insert screenshots of admin dashboard and user pages



Database Design Overview

Database: MySQL (Relational)

Main Entities:

- Users — authentication and roles 

- Recipes — main content table 

- Categories & Cuisines —

classification 

- Ingredients — detailed recipe 

info 

- Recipe_Ingredients — bridge for 

many-to-many link



Database Relationships

Key Relationships:

- One User → Many Recipes 

- One Category → Many Recipes 

- One Cuisine → Many Recipes 

- Many Ingredients Many Recipes 

(through Recipe_Ingredients)

Data Integrity:

- Primary/foreign keys with cascading 
deletes



System Architecture



TheMealDB API Integration

Goal: Let Admins import recipes directly from TheMealDB. 

Endpoints Used: 

- /list.php?c=list → Categories 

- /list.php?a=list → Areas 

- /filter.php?c=Seafood → Meals by category 

- /lookup.php?i=52772 → Meal details by ID 

Tech Used: Spring WebClient (non-blocking) 

String response = webClient.get() 

.uri("/filter.php?c=" + category) 

.retrieve() 

.bodyToMono(String.class) 

.block(); 



Admin Dashboard & Import Workflow

The admin home page provides three main 
actions — Manage Users, Manage Recipes, 
and Import Recipes. 2. App fetches meals 
from TheMealDB.

• Manage Users: Promote, demote, or delete 
users easily.
• Manage Recipes: Edit, view, or delete 
imported recipes.
• Recipes can also be imported by entering 
an ID or browsing from TheMealDB API. 4. 
Clicks “Import” → Recipe stored in local 
DB.

Admins can choose a Category or Area and 
load meals directly from TheMealDB — a 
one-click import workflow.



Challenges & Solutions

Challenge Solution

Dynamic Ingredient List Use javascript to add and remove 

input fields, clear and re-add 

strategy in RecipeService

Duplicate imports Checked via existsByExternalId()

Deleting Cloud Storage Images Added logic to the RecipeService

that, upon recipe deletion or image 

update, calls the 

ImageStorageService to explicitly 

delete the old file from the B2 

bucket.

Admin deletion protection Prevented root admin removal

Alerts disappearing too fast

Integrating S3-Compatible Storage

Use boostrap warning class

Configured the AWS S3 client with 

an endpointOverride in our 

B2StorageConfig to point to the 

Backblaze URL.



Version Control & Teamwork

Collaboration Tools:

- Git & GitHub for code versioning

- Branch workflow (feature/mealdb-import-ui, feature/register)

- GitHub Pull Requests for review

- Microsoft Teams for discussion

- Trello for task management



What We Learned (API Integration)

Map JSON to a Java Object with WebClient



What We Learned (Working with deployment) 

Connect Spring Boot App to external services



What We Learned (Working with deployment) 

Presigned link with s3 bucket



What We Learned (Team Workflow)

Team Practices:

- Merge often, commit small changes

- Review code before pushing 

- Used Git branching strategy (feature branches, pull requests)

- Learned to resolve merge conflicts collaboratively

- Improved communication via regular code reviews and stand-ups



Future work

• Implement User Reviews and Ratings

• Add Favorite Recipes

• Develop Meal Planning

• Email Meal planner to user email



Summary

Achievements:

- Built a complete full-stack recipe management system

- Integrated with external REST API

- Created responsive, user-friendly interface

- Ensured data consistency and security

Result:

A functional, extensible app built through teamwork and learning.



Thank You

Team Members: Vu Minh Triet , Yang Peng

Instructor: Gregory Prokopski

“A project built with passion for food and technology.”


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

