S AN AN VAN

FLIZABETH MOKRUSA |

BACKGROUND

e EVENT VENUES GET REQUESTS TO HOST WEDDINGS AND NEED TO MANAGE MULTIPLE ROOMS
AND HAVE OTHER CHALLENGES LIKE:

o GUESTS WITH FOOD ALLERGIES
o (GUESTS WITH SPECIAL DIETARY PREFERENCES

o MANAGING DISTRIBUTION OF FOOD ON THE DAY OF THE EVENT WITH MULTIPLE MENU OPTIONS

OUR SOLUTION

* A DESKTOP APPLICATION WHICH CAN BE USED TO:
O ASSIGN ROOMS TO WEDDINGS ON A PARTICULAR DATE

o GUEST LISTS CAN BE IMPORTED FROM AN EXCEL SPREADSHEET TO AVOID TYPING EACH GUESTS INFORMATION MANUALLY
O SEATING IS INITIALLY AUTOMATICALLY ASSIGNED BASED ON PROXIMITY TO BRIDE

o ABILITY TO PRINT THE SEATING PLAN WITH GUESTS WHO HAVE ALLERGIES HIGHLIGHTED IN PINK AND CHOSEN MENU OPTION
UNDER THEIR NAME

* BENEFITS:
o AVOIDS ACCIDENTALLY DOUBLE BOOKING ROOMS
o AUTOMATIC SEATING ALGORITHM SAVES TIME ON ASSIGNING SEATS
o PRINTABLE FLOOR PLAN HELPS WAITING STAFF DISTRIBUTING MEALS AND ENSURING SAFETY FOR PEOPLE WITH ALLERGIES

OUR SOLUTION

VenueFlow App

Weddings SeatingPreferences

WeddingID INT PK <{GuestID INT PK PreferencelD
Name NVARCHAR(100) TablelD INT FK NULLABLE GuestID_Source
Date DATE MenuOptionID NT FK GuestID_Target
RoomCapacity |INT GuestName NVARCHAR(100) IsMustSitWith
NumberOfTables |INT FamilyGroup NVARCHAR(50)

ProximityToBride INT

<]DietaryRestrictions |NVARCHAR(255)
Alergylnfo NVARCHAR(255)

TablelD

<{WeddingID MenuOptions

TableNumber Mer?qutionID INT PK

SeatingCapacity OptionName NVARCHAR(100)
Category NVARCHAR(50)
Alergylnfo NVARCHAR(255)

CHALLENGE: DATA IMPORT

* THE USER NEED: WEDDING PLANNERS LIVE IN EXCEL. THEY DON'T WANT TO MANUALLY TYPE
150 GUEST NAMES INTO OUR APP

e THE TECHNICAL PROBLEM:
e EXCEL IS "FLAT" (JUST ROWS AND COLUMNS)
* OUR DATABASE IS "RELATIONAL" (SCHEMA WITH FOREIGN KEYS)

* THE RISK: IF WE JUST COPY-PASTED DATA, WE WOULD HAVE DUPLICATES (E.G., 50 ROWS SAYING
"BEEF") OR "ORPHANED RECORDS" (GUESTS WITH NO WEDDING ID)

|
|
fa s g e~
- LR ©

var couple :Listestring?> = TOWS // List<ExcelRows N var distinctMeals :IEnunerablecstring?> = TOWS // List<ExcelRou>
Mhere(r:excelron => r.Proximity == @ && !string.IsNullOrEmpty(r.FullName))// IEnuserablesExcelfows | .Select(r:Excetion => r.MealChoice)
.Select(r:Excetron => r.FullName) // IEnumerablesstring?s = here(n tsing? => Istring. IsNullOrEnpty(n))
.ToList(); . o
5 .Distinct();
~ string weddingName = "Wedding Event"; - . &
LI I if (couple.Count > ©) © var dbMeals :List<Henuoption= = context.MenuOptions.ToList();
{ .
| weddingName = §"Wedding of {string.Join(" & ", couple)}"; .~ foreach (var mealName in distinctMeals)
} 8 |
% if (mealName != null & !dbMeals.Any(m:#enuoption => m.OptionName == mealName))
var newWedding = new Wedding : {
{ . var newMenu = new MenuOption { OptionName = mealName, Category = "Standard", AlergyInfo = "" }
Name = weddingName, & context . MenuOptions. Add (newMenu) ;
Date = DateOnly.FromDateTime(DateTime.Now.AddMonths(1)), > T Snvel:l'langest}'
e — : 1
. RooeCapacity = cous [dbMeals. Add(neaMenu);
context .Weddings . Add(newhedding) ; }
context.SaveChanges(); }

CHALLENGE: DRAG AND DROP FOR SEATING
ASSIGNMENT

* THE SEATING PLAN IS DRAWN DYNAMICALLY ON A CANVAS. IMPLEMENTING A FULL 'DRAG-

AND-DROP' SYSTEM FROM ONE VECTOR SHAPE (A SEAT) TO ANOTHER IS MATHEMATICALLY
COMPLEX.

* |T REQUIRES:

o ATTACHING DRAG EVENT HANDLERS TO EVERY DYNAMICALLY GENERATED RECTANGLE.

o CALCULATING HIT TESTING' IN REAL-TIME TO SEE IF THE MOUSE IS HOVERING OVER A DIFFERENT
TABLE.

o MANAGING THE STATE OF THE 'DRAGGED' VISUAL SO IT FOLLOWS THE MOUSE CURSOR."

SOLUTION: UNSEAT TO REASSIGN

. ATTACH EVENT (Inside Drawing Loop)
Rectangle placemat = new Rectangle

{
... styling properties ..
Tag = guest.GuestlId, Store ID in the visual element

e TO SOLVE THIS WITHIN OUR TIME CONSTRAINTS WITHOUT e S

he dynamically

COMPROMISING FUNCTIONALITY, WE SIMPLIFIED THE USER FLOW. st sossiomussons - locons st
INSTEAD OF DRAGGING DIRECTLY FROM SEAT A TO SEAT B, WE o

private async void Placemat_MouseRightButtonUp(object sender, MouseButtonEventArgs e)

IMPLEMENTED AN 'UNSEAT' FEATURE. ;

o LOGIC: USERS SIMPLY RIGHT-CLICK A SEATED GUEST TO RETURN [
THEM .I.O THE IUNASSIGNEDI LlST. \Esmg (var isolatedContext = new VenueFlowDbContext())
var guest = await isolatedContext.Guests.FindAsync(guestld);
o BENEFIT: IT TURNED A COMPLEX INTERACTION PROBLEM (ANY SEAT [(e

TO ANY SEAT) INTO A SIMPLER STATE CHANGE st Tl -ty
(SEATED (XK UNASSIGNED IR SEATED) ; . await isolatedContext.SaveChangesAsync();

}

e Guest ID from the clicked rectangle
is Rectangle placemat && placemat.Tag is int guestld)

Refresh UI: Guest ret s to
await DrawRoomLayoutIsolated();
await PopulatelUnassignedGuestsIsolated();
}
}

WHAT WE LEARNED: SEATING ALGORYTHM

* THE PAPER BY KRESTEN LINDORFF-LARSEN PROPOSES TREATING THE SEATING ARRANGEMENT NOT JUST AS A
LOGIC PUZZLE, BUT AS A PHYSICS OPTIMIZATION PROBLEM, SIMILAR TO FINDING THE LOWEST ENERGY STATE IN A
SYSTEM OF INTERACTING SPINS.

o THIS IS VERY COMPLEX AND THE NUMBER OF OPTIONS IS N!

* THE PAPER USES SIMULATED ANNEALING (A MONTE CARLO METHOD) TO RANDOMLY SWAP GUESTS AND
SLOWLY "COOL DOWN" THE SYSTEM TO FIND A "GOOD ENOUGH" SOLUTION RATHER THAN A PERFECT ONE.

* CODING THIS REQUIRES:
o BUILDING ADJACENCY MATRICES FOR THE ROOM GEOMETRY.
o QUANTIFYING "COMPATIBILITY" AS A NUMERICAL VECTOR FOR EVERY GUEST PAIR.
o IMPLEMENTING AN ITERATIVE PHYSICS SIMULATION LOOP THAT RUNS THOUSANDS OF TIMES.

WHAT WE LEARNED: SEATING ALGORYTHM

* OUR SOLUTION: A LOGICAL "GREEDY p;;i:jz;;gf::p; ;rg)g;;;:mmde)
ALGORITHM" POWERED BY LINQ SORTING. .OrderBy(g => g.Key);

® WE PR'OR'T'ZED SPEC'FIC RULES (FAM”_Y & ;oreach (var proximityGroup in proximityGroups)
PROXII\/\ITY) AND SATISFIED THEM ONE BY

var familyGroups = proximityGroup

ONE. THIS IS MUCH FASTER AND EASIER TO -Where(g(=> g-TableId == nu;U
.GroupB => g.FamilyGrou
DEBUG THAN A PROBABILISTIC SIMULATION. et R B PO
° WE USED LlNQ TO SORT GUESTS INTO A ;oreach (var familyGroup in familyGroups)

STRICT PRIORITY QUEUE.

WHAT WE LEARNED: SEARCH BAR(REAL-TIME
FILTERING)

var guests:List<=Guest> = context.Guests// DbSet<Guest=
.Include(navigationPropertyPath: g :Guest == .MenuOption) // IIncludableQueryable=Guest,MenuOption?s
.Where(g :cuest => g.WeddingId == _weddingId) // IQueryable<Guest=
.ToList(];

_allGuests = guests;

private void TxtSearch_TextChanged({object sender, TextChangedEventArgs e)
{

var textBox = sender as TextBox;
e e 22 L S

string filter = textBox.Text.TolLower();

if (string.IsNullOrWhiteSpace(filter))

i
ListGuests.ItemsSource = _allGuests;
}
else
{
ListGuests.ItemsSource = _allGuests.Where(g :Gusst ==
(g.GuestName != null && g.GuestName.ToLower().Contains(filter)) ||
(g.FamilyGroup != null && g.FamilyGroup.TolLower().Contains(filter))
). ToList(); // List=Guests
}

if (printDialog.ShowDialeg() == true)

FixedDocument document = new FixedDocument();

't'lléct-ent.Dn:ulentPnginatnr PageSize = new Size(printDialog.PrintableAreaWidth, printDialog. Prmtahlenrealle:l.ght),

FixedPage page = new FixedPage();
page.Width = document.DocumentPaginator.PageSize.Width;

page.Height = document.DocumentPaginator.PageSize.Height;

Image printImage = new Image();
printImage.Source = _imageToPrint;

double scaleX = page.Width / _imageToPrint.Width;
duuble scaleY = page.Height / _imageToPrint.Height;
duub'l.e scale = System.Math.Min(scaleX, scaleY);

printImage.Width = _imageToPrint.width * scale;
printImage.Height = _imageToPrint.Height * scale;

double left = (page.width - printImage.Width) / 2;
double top = (page.Height - printImage.Height) / 2;

FixedPage.SetLeft(printImage, left);
FixedPage.SetTop(printImage, top);

page.Children.Add(printImage);
PageContent content = new PageContent(};

‘((1Addchild)content) . AddChild(page);
document.Pages.Add(content);

- LR A J
OO0Q.....Q....l.'o.t..o.o..o.o.o.oo-
Pr:l.ntDJ.alng pr:l.ntDla‘I.ug = new PrintDialeg(};

—

printDialog.PrintDocument(document . DocumentPaginator, description:

"Seating Plan");

FUTURE OF WORK

NICER Ul
ABILITY TO MANUALLY CREATE WEDDINGS

ABILITY TO CHANGE THE LAYOUT OF THE TABLES

OPTION TO SEAT GUESTS MANUALLY INSTEAD OF THEM BEING AUTOMATICALLY ASSIGNED

E l | M M A R Y 8 Seating Plan Visualization an d Manual Adjustment t oo NEE @ @ = = =
Unassigned Guests
9 Floor Plan Canvas
ra s on
the e
ca e a M]
Duck
Sweetheart
(2/2)

* DELIVERED A FUNCTIONAL WPF DESKTOP APPLICATION INTEGRATED
WITH AZURE SQL DATABASE FOR ROBUST, CLOUD-BASED DATA
PERSISTENCE.

* A PRIORITY-BASED GREEDY ALGORITHM THAT SUCCESSFULLY
AUTOMATES GUEST PLACEMENT BASED ON "PROXIMITY TO BRIDE" AND

g2

£

Table 1 Table 2

"FAMILY GROUP" LOGIC. aro) @/10) '
DEVELOPED A CUSTOM GRAPHICAL ENGINE THAT DRAWS ACCURATE

ROOM LAYOUTS, TABLES, AND SEATS WITH ROTATED TEXT FOR

READABILITY.

* QOVERCAME Ul CHALLENGES TO IMPLEMENT A DRAG-AND-DROP
SYSTEM COMBINED WITH A "RIGHT-CLICK TO UNSEAT" WORKFLOW FOR
EASY MANUAL ADJUSTMENTS.

* SUCCESSFULLY IMPLEMENTED VISUAL CUES (COLOR-CODED
PLACEMATS) TO FLAG ALLERGIES, DIRECTLY AIDING EVENT STAFF.

(6/10) (2/10)

e -
Iltnu.iq
1LZ 1 |
. y
| |

MAIN WINDOW

o WEDDING VIEW WINDOW o UNIT TESTS
o IMPORT FROM EXCEL AND EXPORT TO PDF

	Slide 1: VenueFlow
	Slide 2: Background
	Slide 3: Our Solution
	Slide 4: Our Solution
	Slide 5: Challenge: Data import
	Slide 6: Challenge: Data import
	Slide 7: Challenge: Drag and drop for seating assignment
	Slide 8: Solution: Unseat To reassign
	Slide 9: WHat We learned: Seating ALgorythm
	Slide 10: WHat We learned: Seating Algorythm
	Slide 11: WHat We learned: Search Bar(Real-time Filtering)
	Slide 12: WHat We learned: Print to PDF
	Slide 13: Future of work
	Slide 14: summary
	Slide 15: Distribution of work

